1. Consider the R = 1/2, K = 4 code with

$$\mathbf{G}(D) = [1 + D^2 + D^3, 1 + D + D^2 + D^3].$$

- (a) Draw the code tree for an information sequence of length L=4.
- (b) Find the code word corresponding to the information sequence  $\mathbf{u} = (1001)$ .
- 2. For the binary input, 8-ary output DMC with transition probabilities  $P(r_i|v_i)$  given by the following table:

| $P(r_i v_i)$ | $r_i = 0_1$ | $0_2$ | $0_{3}$ | 04    | $1_1$ | $1_2$ | 1 <sub>3</sub> | 14    |
|--------------|-------------|-------|---------|-------|-------|-------|----------------|-------|
| $v_i = 0$    | 0.434       | 0.197 | 0.167   | 0.111 | 0.058 | 0.023 | 0.008          | 0.002 |
| 1            | 0.002       | 0.008 | 0.023   | 0.058 | 0.111 | 0.167 | 0.197          | 0.434 |

and for the code of Problem 1, find an integer metric table for the Fano metric. (*Hint:* Scale each metric by an appropriate factor and round to the nearest integer.)

- 3. Consider the code of Problem 1 and a BSC with p = 0.045.
  - (a) Find an integer metric table for the Fano metric.
  - (b) Decode the received sequence

$$\mathbf{r} = [11, 00, 11, 00, 01, 10, 11]$$

using the stack algorithm.

(c) Decode the received sequence

$$\mathbf{r} = [11, 10, 00, 01, 10, 01, 00]$$

using the stack algorithm. Compare the final decoded path with the decoded path if the Viterbi algorithm is used.

4. Repeat the example worked in class: R = 1/3 code with

$$G(D) = [1 + D, 1 + D^2, 1 + D + D^2],$$

a metric table given as

| $M(r_i v_i)$ | $r_i = 0$ | 1  |
|--------------|-----------|----|
| $v_i = 0$    | 1         | -5 |
| 1            | -5        | 1  |

and a received sequence of

$$\mathbf{r} = [010, 010, 001, 110, 100, 101, 011]$$

- (a) Using the stack-bucket algorithm with a bucket quantization interval of 5. Assume that the bucket intervals are  $\dots$ , +4 to 0, -1 to -5, -6 to -6,  $\dots$
- (b) Using the stack-bucket algorithm with a bucket quantization interval of 9. Assume that the bucket intervals are  $\dots$ , +8 to 0, -1 to -9, -10 to -18,  $\dots$
- 5. Repeat Problem 3 for the Fano algorithm with threshold increments of  $\Delta = 5$  and  $\Delta = 9$ . Compare the final decoded path and the number of computations to the results of the examples worked in class and to the results of Problem 3.