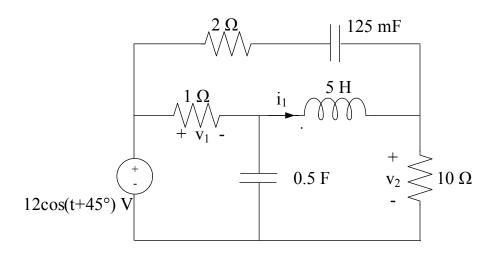
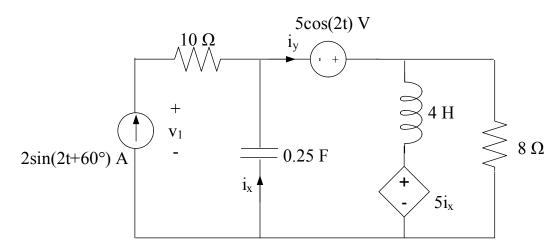
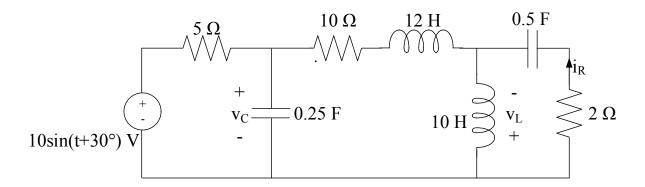

EE 313 – Problem Set 1


Material to be covered on Quiz 1 scheduled September 12th

- 1. For the following pairs of signals, make a determination about which signal leads by a positive angle.
 - a. $v_1(t) = 4 \cos(5t)$ Volts and $v_2(t) = 10 \cos(5t-20^\circ)$ Volts
 - b. $v_x(t) = -10 \cos(100t+50^\circ)$ Volts and $v_y(t) = 10 \sin(100t+10^\circ)$ Volts
 - c. $i_x(t) = -2 \sin(t-130^\circ)$ Amps and $i_v(t) = -5 \cos(t+100^\circ)$ Amps
- 2. Transform the following sinusoidal time functions into the complex exponential form and then into the phasor form.
 - a. $v(t) = 10 \cos(120t-225^{\circ})$ Volts
 - b. $i(t) = 5 \sin(600t-125^{\circ})$ Amps
 - c. $v(t) = -3 \sin(20t) \text{ Volts}$
 - d. $i(t) = -10 \cos(2t + 45^{\circ})$ Amps
- 3. Evaluate the following expressions and transform them into the sinusoidal time representation. Your final answer should be in the following form: $f(t) = A \cos(\omega t + \phi) + jB \sin(\omega t + \phi)$. For each answer below, the angular frequency is 5 rad/s.
 - a. $6\angle 25^{\circ} + 10\angle -40^{\circ}$
 - b. $(5\angle 80^{\circ})(2+j4)$
 - c. (-1-j8) + (6+j5)
 - d. $(2\angle 140^\circ) + (3-j6)$
 - e. $\frac{(-4+j3)^2}{2/10^6}$
 - f. $\frac{10\angle -25^{\circ}}{-2+i10}$
- 4. Consider the following circuit.


- a. Find the forced response for $v_C(t)$. The solution guess is $v_C(t) = A\cos(t) + B\sin(t)$.
- b. Find the forced response for $v_c(t)$. The solution guess is $v_c(t) = Ae^{jt}$.

5. The following circuit is given in the time domain and assumes steady-state conditions:


- a) Transform the circuit to the frequency domain.
- b) Use nodal analysis and mesh analysis to solve for the phasor voltages, V_1 and V_2 and the phasor current, I_1 . Show that your answers for each method match.
- c) Transform the phasors to the time domain and give the real part of the sinusoidal representation.

6. The following circuit is given in the time domain and assumes steady-state conditions:

- a) Transform the circuit to the frequency domain.
- b) Using nodal analysis and mesh analysis, solve for the phasors \mathbf{V}_1 and \mathbf{I}_x and \mathbf{I}_y .
- c) Find $v_1(t)$ and $i_x(t)$ and $i_y(t)$ (only the real part of the signal is necessary).

7. Consider the following subcircuit.

- a. Convert the circuit from the time domain to the frequency domain.
- b. Find the equivalent impedance seen by the source. What is the reactance of the impedance? Is it capacitive or inductive?
- **c.** Expand the circuit and find the labeled voltages and current in phasor form and then give the real part of time domain values.