EE 313 –Design Problem Last names between I and P Fall 2010
Due Tuesday, November 23rd.
Accepted without penalty by November 30th.

A balanced, three-phase, Y-connected source has a line voltage of 250 Vrms. The source frequency is 60 Hz. The balanced, three-phase loads have the following characteristics:

 $Z_{\Delta 1}$: $P_1 = 45 \text{ kW} \text{ and } Q_1 = +63 \text{ kVAR}$

 Z_{y2} : $4\angle 35^{\circ} \Omega$

 $Z_{\Delta 3}$: PF₃ = 0.15 lagging and I_{p3} = 100 A rms

 Z_{v4} : $S_4 = 15 \angle 50^{\circ} \text{ kVA}$

- 1. Determine the phasor value of each impedance and the current for each load.
- 2. Determine the total line current, I_{aA} .
- 3. Determine the total complex power, average power, and reactive power delivered by the source to the loads.
- 4. What is the power factor of the three loads combined?
- 5. It is necessary to add a parallel load in the Y configuration to the circuit to reduce the magnitude of the line current by 50%. The line voltage and total average power delivered by the source may not change. What are the impedance and the component value of this load?
- 6. What is the power factor of the additional load?
- 7. What is the power factor of the four loads combined?